On Generalization of prime submodules
نویسندگان
چکیده مقاله:
Let R be a commutative ring with identity and M be a unitary R-module. Let : S(M) −! S(M) [ {;} be a function, where S(M) is the set of submodules ofM. Suppose n 2 is a positive integer. A proper submodule P of M is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 R and x 2 M and a1 . . . an−1x 2P(P), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x 2 Por a1 . . . an−1 2 (P : M). In this paper we study (n − 1, n) − -prime submodules(n 2). A number of results concerning (n−1, n)−-prime submodules are given.Modules with the property that for some , every proper submodule is (n−1, n)−-prime, are characterized and we show that under some assumptions (n−1, n)-primesubmodules and (n − 1, n) − m-prime submodules coincide (n,m 2).
منابع مشابه
on generalization of prime submodules
let r be a commutative ring with identity and m be a unitary r-module. let : s(m) −! s(m) [ {;} be a function, where s(m) is the set of submodules ofm. suppose n 2 is a positive integer. a proper submodule p of m is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 r and x 2 m and a1 . . . an−1x 2p(p), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x...
متن کاملSOME RESULTS ON STRONGLY PRIME SUBMODULES
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. A proper submodule $P$ of $M$ is called strongly prime submodule if $(P + Rx : M)ysubseteq P$ for $x, yin M$, implies that $xin P$ or $yin P$. In this paper, we study more properties of strongly prime submodules. It is shown that a finitely generated $R$-module $M$ is Artinian if and only if $M$ is Noetherian and every st...
متن کاملOn the Prime Submodules of Multiplication Modules
By considering the notion of multiplication modules over a commutative ring with identity, first we introduce the notion product of two submodules of such modules. Then we use this notion to characterize the prime submodules of a multiplication module. Finally, we state and prove a version of Nakayama lemma for multiplication modules and find some related basic results. 1. Introduction. Let R b...
متن کاملOn graded classical prime and graded prime submodules
Let $G$ be a group with identity $e.$ Let $R$ be a $G$-graded commutative ring and $M$ a graded $R$-module. In this paper, we introduce several results concerning graded classical prime submodules. For example, we give a characterization of graded classical prime submodules. Also, the relations between graded classical prime and graded prime submodules of $M$ are studied.
متن کاملA GENERALIZATION OF PRIME HYPERIDEALS
Let $R$ be a multiplicative hyperring. In this paper, we introduce and study the concept of n-absorbing hyperideal which is a generalization of prime hyperideal. A proper hyperideal $I$ of $R$ is called an $n$-absorbing hyperideal of $R$ if whenever $alpha_1o...oalpha_{n+1} subseteq I$ for $alpha_1,...,alpha_{n+1} in R$, then there are $n$ of the $alpha_i^,$s whose product ...
متن کاملOn T -Rough Prime and Primary Submodules
Roughness in modules have been investigated by B. Davvaz and M. Mahdavipour in 2006 [5]. The purpose of this paper is to introduce and discuss the concept of T -rough prime and primary submodules which is a generalization the lower and upper approximation submodules over a commutative ring. We define a set-valued homomorphism on a module and study some properties of it . We prove some results f...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 39 شماره 5
صفحات 919- 939
تاریخ انتشار 2013-10-15
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023